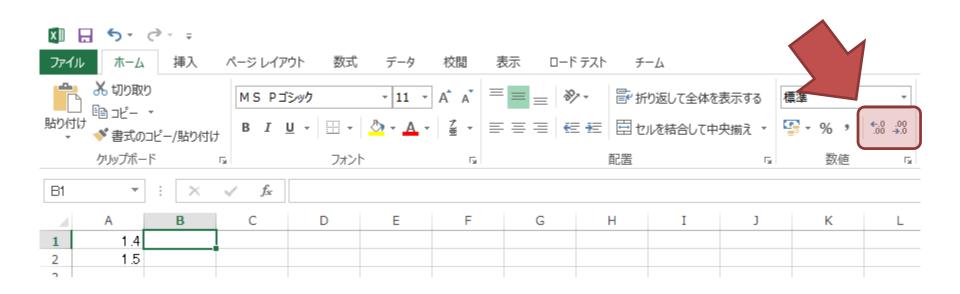
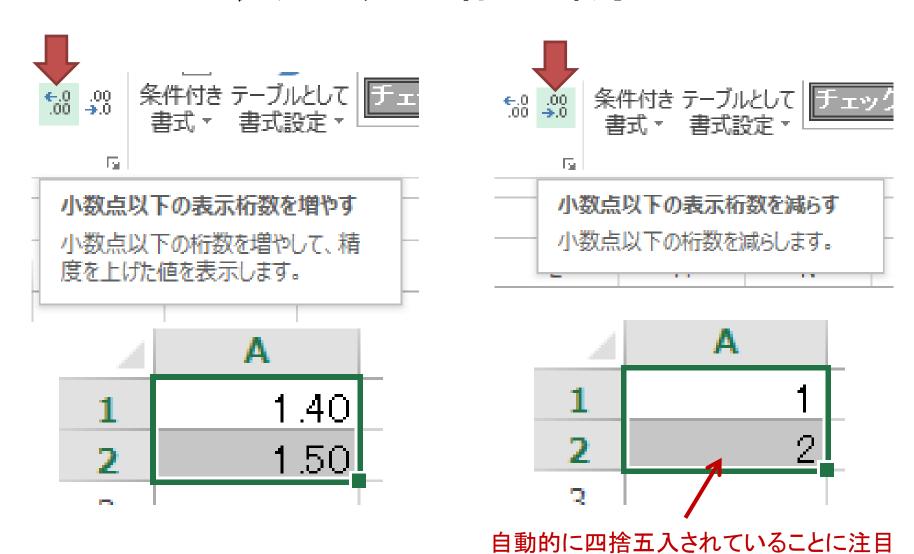
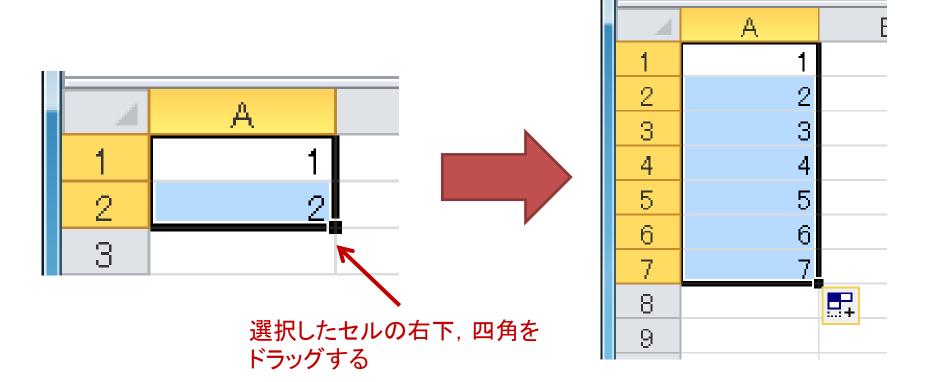
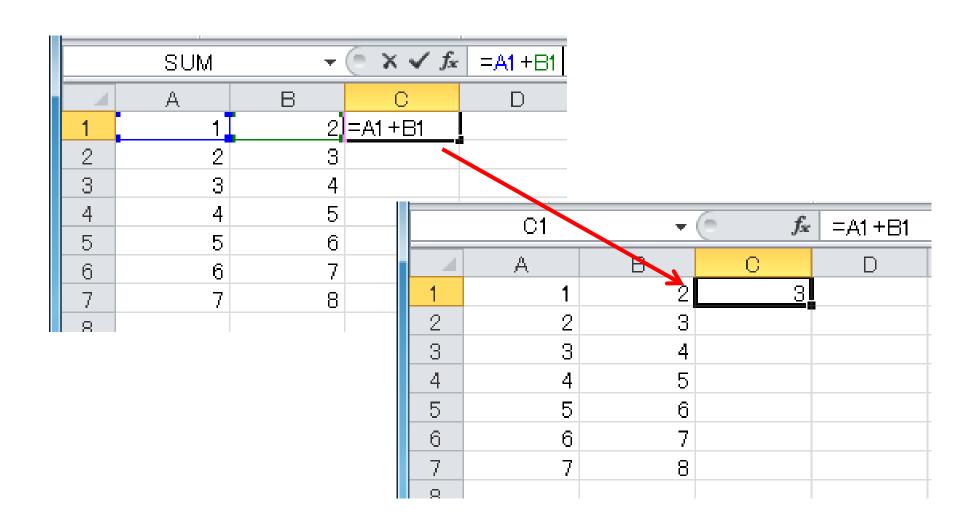

スタートアップゼミ


Excel要点•応用例

要点

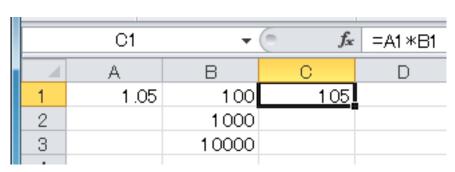

セル・シート・ブック

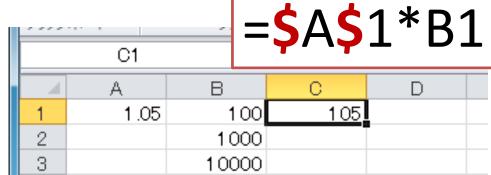

表示する桁の調整


表示する桁の調整

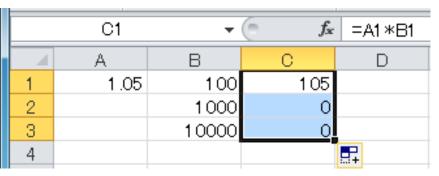
オートフィル

数式(セルの参照)




数式とオートフィル

1111	×15 1 =	2/12/1	-	ниш
	C1	*	f _x	=A1 +B1
4	А	В	С	D
1	1	2	3	
2	2	3	5	
3	3	4	7	
4	4	5	9	
5	5	6	11	
6	6	7	13	
7	7	8	15	
8				


■をダブルクリックすることでも、オートフィル可能

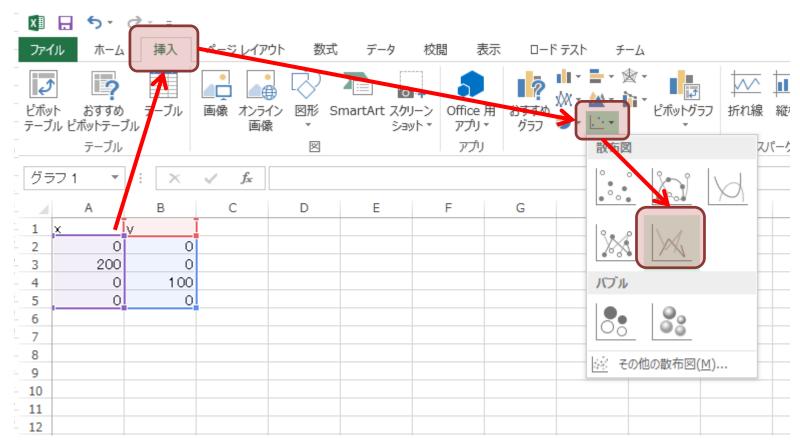
絶対番地

列, もしくは行 の前に\$を加えると 絶対番地となる(F4キー) ⇒オートフィルの 際に位置が変化しない

	C1	•	f_x	=\$A\$1*B	1
	А	В	С	D	
1	1.05	100	105		
2		1 000 1 0000	1050		
3		10000	10500		
4					

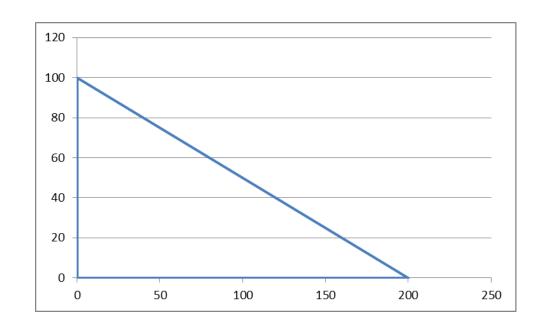
関数

• Excelに様々な関数が用意されている

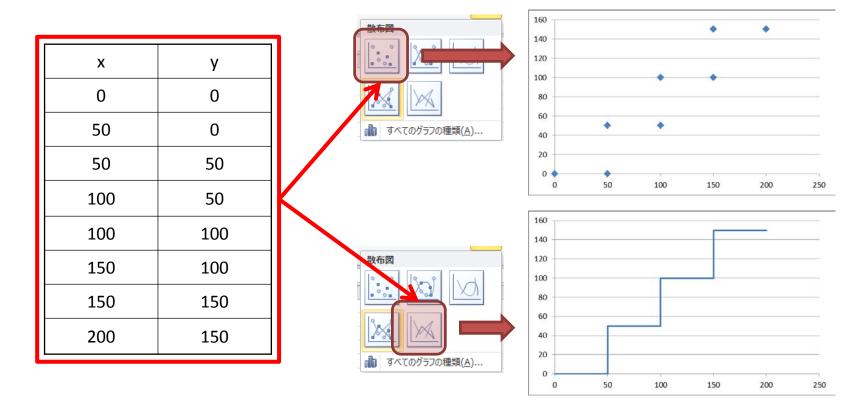

4	А	В	С
1	1.57	=SIN(A1)	1
2	100	=LOG10(A2)	2
3	9	=SQRT(A3)	3
4	5	=IF(A4>=5,4,3)	4
5			=SUM(C1:C4)
6			10
7			=AVERAGE(C1:C4)
8			2
9			

応用

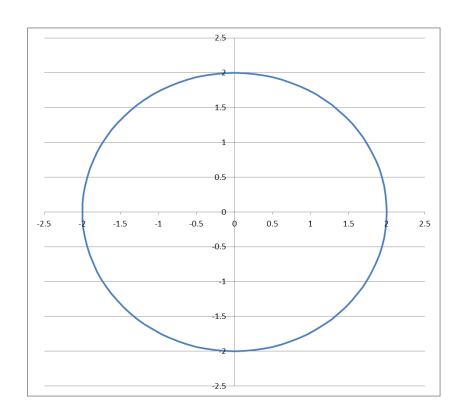
次の4点を結ぶ図形を描くにはどうしたらよいか?


X	У
0	0
200	0
0	100
0	0

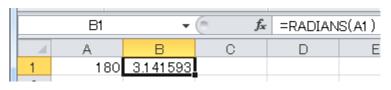
データを入力後、表内のセルを選択、[挿入]⇒[グラフ]⇒[散布図]⇒ポイント間を直線で結ぶグラフを選択



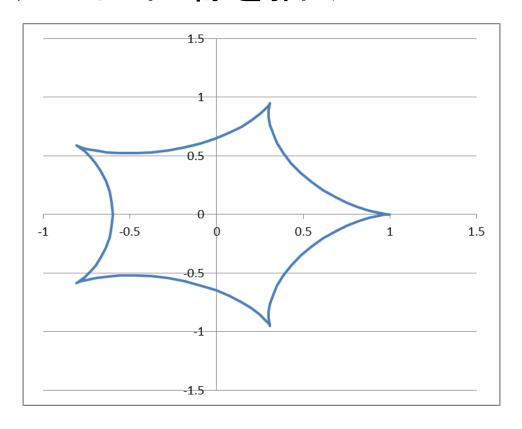
• 結果


X	У
0	0
200	0
0	100
0	0

• 「散布図」では、与えられたデータを 2次元の点としてプロット可能



• グラフで半径2の円を描け



• グラフで半径2の円を描け

- ・ヒント
 - 円は以下の式で表すことができる
 - $x = r\sin(\theta), y = r\cos(\theta)$ (r: 半径)
 - 360個の点を直線で結べばよい
 - 度からラジアンへの変換はRADIANS関数

• 内サイクロイド曲線を描け

rc=1.0, rm=0.2の場合

内サイクロイド曲線を描け

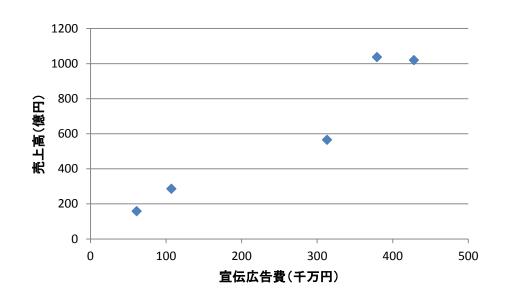
- ・ヒント
 - 内サイクロイド曲線は以下の式より求まる (Wikipediaより引用)

$$\begin{cases} x = (r_c - r_m)\cos\theta + r_m\cos\left(\frac{r_c - r_m}{r_m}\theta\right), \\ y = (r_c - r_m)\sin\theta - r_m\sin\left(\frac{r_c - r_m}{r_m}\theta\right). \end{cases}$$

http://ja.wikipedia.org/wiki/サイクロイド

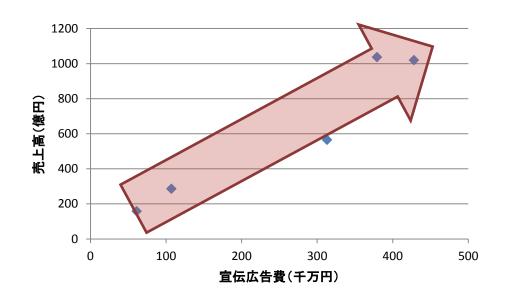
• 例として、"宣伝広告費"に対する"売上高"の データが以下のように存在したとする

宣伝広告費(千万円)	売上高 (億円)
107	286
379	1037
313	565
428	1020
61	158


• 例として、"宣伝広告費"に対する"売上高"の データが以下のように存在したとする

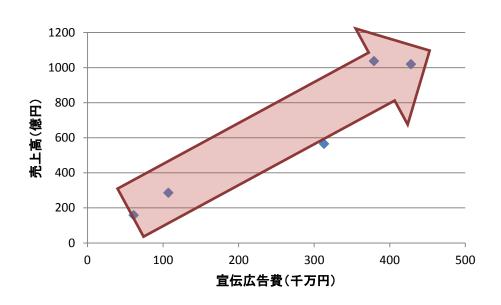
宣伝広告費	売上高 (億円)
(17311)	(16)117
107	286
379	1037
313	565
428	1020
61	158

- ⇒このデータから情報を得る⇒分析する
- ⇒分析方法の一種⇒回帰分析


• 散布図によりグラフ化

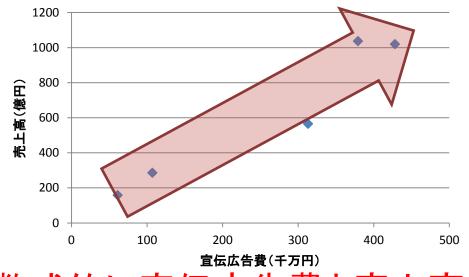
宣伝広告費(千万円)	売上高 (億円)	
107	286	
379	1037	
313	565	
428	1020	
61	158	

• 散布図によりグラフ化

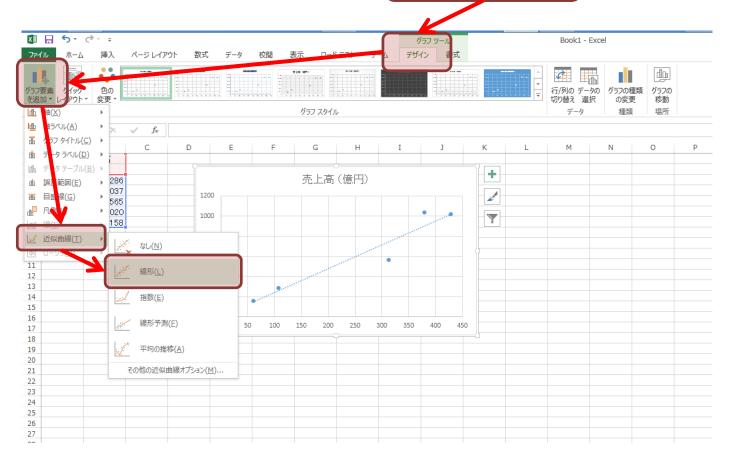

宣伝広告費(千万円)	売上高 (億円)
107	286
379	1037
313	565
428	1020
61	158

言葉で表すと, 「宣伝広告費が高額であれば, それに応じて売上高が増加するようだ」

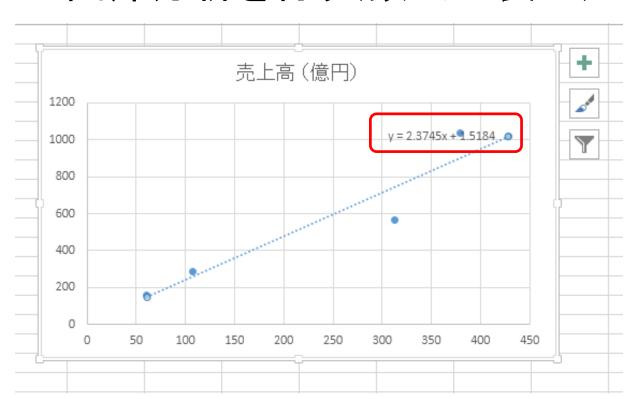
• 散布図によりグラフ化

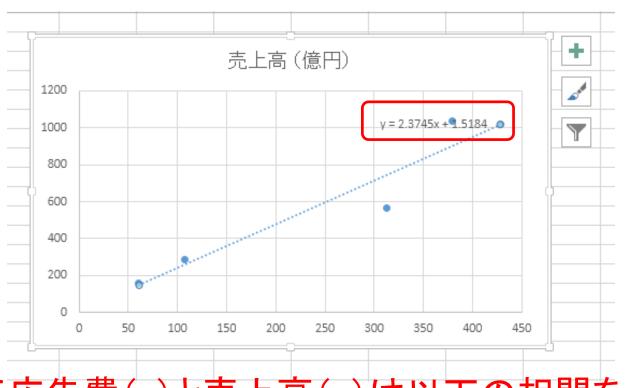

宣伝広告費(千万円)	売上高 (億円)
107	286
379	1037
313	565
428	1020
61	158

宣伝広告費と売上高には"相関"がある


• 散布図によりグラフ化


宣伝広告費(千万円)	売上高 (億円)
107	286
379	1037
313	565
428	1020
61	158


数式的に宣伝広告費と売上高に どのような相関があるのか求める ⇒定量化する 方法が回帰分析


• Excelで回帰分析を行う グラフを選択後

近似曲線の書式設	定		▼ :
近似曲線のオプション ▼			
▲ 近似曲線のオプション			
● 線形近似(L)			
○ 対数近似(<u>O</u>)			
◇ 多項式近似(P)	次数(<u>D</u>)	2	*
✓ 累乗近似(W)			
✓ 移動平均(M)	区間(<u>E</u>)	2	<u></u>
近似曲線名			
● 自動(A)	線形 (売上剤	高 (個) (第四)
○ ユーザー設定(<u>C</u>)			
予測			
前方補外(<u>F</u>)	0.0		区間
後方補外(<u>B</u>)	0.0		区間
471H (O)		0.0	
✓ グラフに数式を表示する(5	()		
□ グラノル: R-2 葉他で表示	9 ත(<u>K</u>)		

宣伝広告費(x)と売上高(y)は以下の相関を持つ y = 2.3745x + 1.5184

宣伝広告費(x)と売上高(y)は以下の相関を 持つ

$$y = 2.3745x + 1.5184$$

⇒今後,いくら宣伝広告費を 投入すれば,どのくらいの売上高が 期待できるのか,ある程度の 予測が可能になる

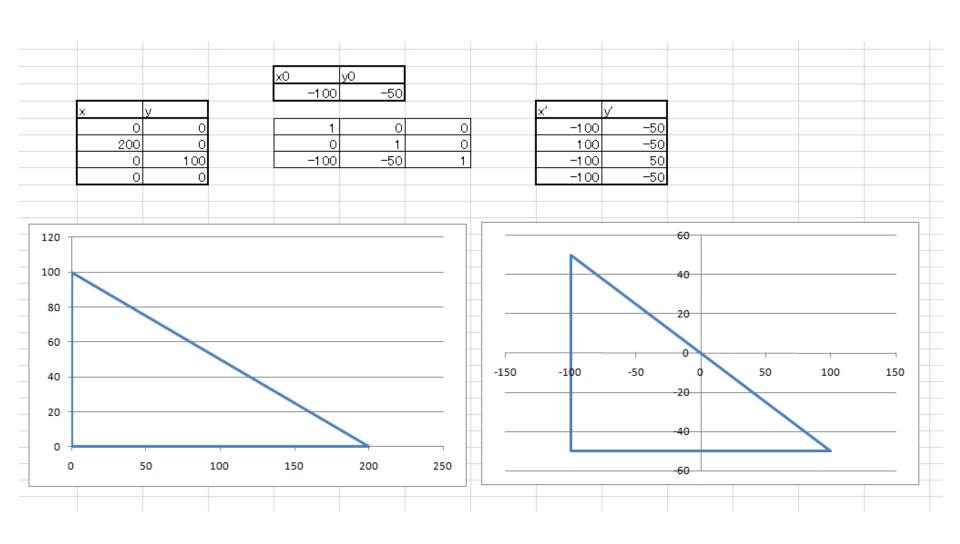
• 回帰分析を手動で行うことが今回の提出課題

$$y = ax + b$$

なぜ課題の方法で、y = ax + bのa, bを 求めることができるのか?

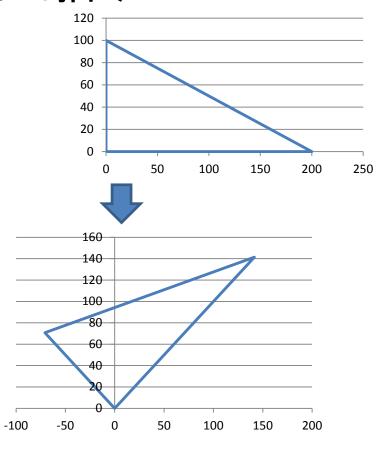
⇒「最小二乗法」と呼ばれる手法

詳細は以下図書や、Webを参照のこと


金谷健一「これなら分かる応用数学教室」共立出版

アフィン変換

 ある位置(x, y)を(x0, y0)平行移動する場合 移動後の位置(x', y')は以下の式で求まる


$$\begin{bmatrix} x' & y' & 1 \end{bmatrix} = \begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ x_0 & y_0 & 1 \end{bmatrix}$$

アフィン変換

• 以下の点列で表される図形を 原点中心45度回転して描け

X	У		
0	0		
200	0		
0	100		
0	0		

 ヒント ある位置(x, y)を角度θ回転する場合 移動後の位置(x', y')は以下の式で求まる

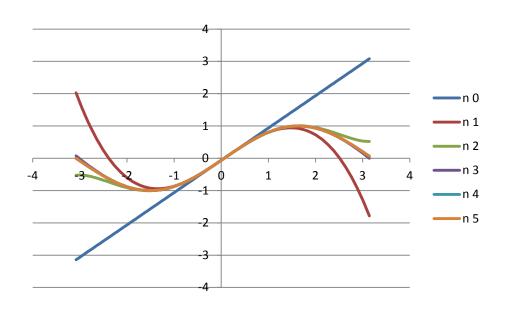
$$\begin{bmatrix} x' & y' & 1 \end{bmatrix} = \begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

関数は次の式で書くことができる

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x_0)(x - x_0)^n$$

関数は次の式で書くことができる

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x_0)(x - x_0)^n$$


ある関数を、簡単な関数(1, x, x², x³, ...)と 係数(a0, a1, a2, a3, ...)の組み合わせで再現する ⇒テイラー展開

• 例:sin関数

$$\sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}x^{2n+1}$$

• 例:sin関数

	1	ı						
	A	В	С	D	E	F	G	Н
1			n					
2			0	1	2	3	4	5
3	t	θ						
4	0	-3.14159	-3.14159	2.02612	-0.52404	0.075221	-0.00693	0.000445
5	0.01	-3.07876	-3.07876	1.785049	-0.5201	0.00014	-0.06835	-0.06245
6	0.02	-3.01593	-3.01593	1.556133	-0.5232	-0.07289	-0.12977	-0.12507
7	0.03	-2.9531	-2.9531	1.339122	-0.53245	-0.14384	-0.19091	-0.18718
8	0.04	-2.89027	-2.89027	1.133771	-0.547	-0.2127	-0.25148	-0.24854
9	0.05	-2.82743	-2.82743	0.939829	-0.56602	-0.27939	-0.31122	-0.3089
10	0.06	-2.7646	-2.7646	0.75705	-0.58875	-0.34385	-0.36985	-0.36804
11	0.07	-2.70177	-2.70177	0.585185	-0.61448	-0.40598	-0.42712	-0.42572
12	0.08	-2.63894	-2.63894	0.423986	-0.64252	-0.46569	-0.48279	-0.48171
13	0.09	-2.57611	-2.57611	0.273205	-0.67224	-0.52285	-0.53662	-0.53579
14	0.1	-2.51327	-2.51327	0.132595	-0.70304	-0.57737	-0.58839	-0.58776
15	0.11	-2.45044	-2.45044	0.001906	-0.73437	-0.62911	-0.63789	-0.63741
16	0.12	-2.38761	-2.38761	-0.11911	-0.76571	-0.67795	-0.68489	-0.68453
17	0.13	-2.32478	-2.32478	-0.2307	-0.79658	-0.72376	-0.72923	-0.72896
18	0.14	-2.26195	-2.26195	-0.33311	-0.82654	-0.76643	-0.77071	-0.77051
19	0.15	-2.19911	-2.19911	-0.42659	-0.8552	-0.80584	-0.80916	-0.80901

• cos関数をテイラー展開, n=5まで算出せよ

$$\cos(x) = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}x^{2n}$$

*Excelでは, x=0, n=0(⇒POWER(0,0))がエラーとなるため, x=0, n=0のセルには直接1を指定する

関数を展開できて何がうれしいのか?

⇒例えば、 コンピュータ上でsin関数を実現できる

- ⇒CPUにsin関数の機能はない
- ⇒テイラー展開を使用すれば、 sin関数を四則演算のみで実現できる